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Preface – First Edition
“What do I do with data like these?”

About six years ago, that simple question started me down the path that led
to this book. My colleagues and I frequently found ourselves working with
slug-test data that could not be readily analyzed with the commonly used
methods. When we turned to the literature for assistance, we discovered few
answers for those confronted with nonideal data. In fact, other than the
useful, but not widely available, literature reviews of Chirlin (1990) and Boak
(1991), we could not find a single general reference to which field practitioners
could go for answers to practical questions about slug tests. Although the
need for such a reference was widely recognized, no one seemed prepared to
invest the time required to put the necessary material together. Finally, in
a moment of frustration, I decided to take a stab at it.

This book is primarily designed to be a practical reference text. However, in
the guise of a practical reference, this book also addresses some fundamental
problems currently limiting the utility of information obtained from slug tests.
Most groundwater scientists and engineers would agree that without more
attention to data-acquisition methodology, the considerable promise of numer-
ical models will never be realized. The slug test can potentially provide very
useful information about the transmissive and storage properties of a unit,
and their variations in space, on a scale of relevance for a variety of modeling
investigations. Unfortunately, however, much of the data currently being
obtained from slug tests is, and often rightfully so, viewed with considerable
skepticism. This book is my attempt to place the slug test on sounder theoret-
ical and procedural grounds with the goal of improving both the actual and
perceived quality of information obtained with the technique. Although this
book should certainly not be considered as the final word on the topic, I hope
it can serve as a useful reference for the near future.

I am the only author of this book, and thus solely responsible for its con-
tents. However, the research that underlies this effort should not be construed
as the product of my labors alone. Many individuals contributed to various
aspects of this work. Of particular note are my long-time colleagues at the
Kansas Geological Survey, Carl McElwee and John Healey. Carl and I have
worked together for a number of years on slug tests, as is evident by our coau-
thorship of several publications on the technique. Our cooperation in this and
related work has been an extremely positive influence on my career. John
Healey, our field hydrogeologist par excellence here at the Kansas Geological
Survey, has been the source of much advice and assistance on the practical
aspects of the methodology. John’s background in the drilling industry was of
particular assistance in preparation of Chapter 2. I also want to acknowledge
the contributions of Geoff Bohling of the Kansas Geological Survey and Gil
Zemansky of Compass Environmental. Geoff was the primary author of the

ix



Suprpump analysis package, variants of which I used to perform many of the ana-
lyses discussed in this book. Sunday morning jogs with Gil have been the source of
invaluable information about current practices in the consulting industry.

Many students at the University of Kansas provided field support for this
work. These include Wenzhi Liu, Xiaosong Jiang, Tianming Chu, Yahya
Yilmaz, Kristen Stanford, and Zafar Hyder. I would particularly like to cite the
contribution of Wenzhi Liu. The careful reader will note that many of the tests
presented as examples in this book were performed between late September and
mid-November, a period during which the weather in Kansas can be particu-
larly fickle. As a result, Wenzhi and I often ended up working under conditions
that were considerably less than ideal. His good humor and ability to withstand
the cold, wind, and dust without complaint were greatly appreciated.

I would also like to acknowledge the contributions of several individuals
who kindly shared with me the products of their work. Kevin Cole of the Uni-
versity of Nebraska spent all-too-many hours generating the results presented
in Tables 5.5, 6.3, and 6.4. Abraham Grader of Pennsylvania State University
also went beyond the call of duty to generate simulation results that were an
important contribution to Chapter 10. Frank Spane of Pacific Northwest
Laboratory provided a copy of the DERIV program and valuable advice
drawn from his extensive experience with various slug-test methods. Srikanta
Mishra of Intera and Chayan Chakrabarty of Golder and Associates were
both quite helpful in providing unpublished/in-press manuscripts.

I would also like to thank several individuals whose contributions were of
a less-tangible nature. Bruce Thomson of the University of New Mexico pro-
vided friendship and excellent restaurant recommendations for the “Duke
City” in the early stages of this project. Vitaly Zlotnik of the University of
Nebraska was quite helpful with pithy comments and as a font of Russian
aphorisms, the meaning of which I honestly never understand (fortunately,
“ah, yes” seems to be the appropriate response in most cases). Rex Buchanan,
Rich Sleezer, and cohorts provided editorial comments and comic relief in the
final stages of this project. Finally, I would like to acknowledge the invaluable
contributions of three individuals in the administration of the Kansas Geo-
logical Survey: Lee Gerhard, Larry Brady, and Don Whittemore. As a result
of their efforts, the Kansas Geological Survey has certainly been an exciting
place to pursue research in applied hydrogeology.

Although the above individuals all made important contributions to this
effort, the most significant contributions were those of my family. This book
could not have been written without the wholehearted support of my wife, Yun,
and our children, Bill and Mei. Yun displayed much forbearance in allowing
me the all-too-many nights and weekends of work that were needed to complete
the book, while also serving as expert draftsperson and as all-purpose spiritual
advisor. I greatly look forward in the coming months to spending much more
time with Yun and the gang, and much less time with this computer.

Lawrence, Kansas
March 15, 1997
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Preface – Second Edition
It has been more than 22 years since I wrote the preceding paragraphs. In the
intervening period, significant progress has been made in many areas related
to slug tests. This second edition was motivated by the need to incorporate
these new developments, and most chapters have been extensively rewritten to
reflect them. In particular, Chapters 4, 6–8, and 10–13 have been thoroughly
revised. Additional field examples have been included and all graphics in the
book have been redone. The ultimate objective of this effort was to have
a practical reference text that is better positioned to stand the test of time.

A number of individuals made significant contributions to this second edition.
Glenn Duffield, the developer of the AQTESOLV well-test analysis software and
my long-time partner in continuing education courses, provided important assist-
ance with software for the evaluation of all of the major analysis methods discussed
in the book and with detailed review comments on the book draft. Glenn’s AQTE-
SOLV software has been a key element in the transfer of promising methods from
the research arena to widespread field use and in making the analysis guidelines
proposed here easy to implement. My colleague for the last 30 years at the Kansas
Geological Survey, Geoff Bohling, provided important assistance in reviving rusty
FORTRAN programs. Our long-time graphics artist at the Survey, Mark Schone-
weis, created all of the schematic figures. In addition, my Survey colleagues Steve
Knobbe, Ed Reboulet, and Gaisheng Liu assisted in the collection of field data for
Figures 7.2 and 8.7A–B. Steve Knobbe also provided helpful review comments for
Chapter 7. Duane Hampton of Western Michigan University kindly reviewed the
LNAPL baildown test material. Xiuyu Liang of Southern University of Science
and Technology generously provided the software for the evaluation of the Liang
et al. (2018) solution for slug tests in unconfined aquifers, which was helpful in the
assessment of the impact of the water table boundary condition. I have taught more
than 40 short courses on slug tests in the last 20 years, most of which were organ-
ized by Dan Kelleher of Midwest Geosciences. That experience helped keep me
abreast of the issues of most importance in practice and led me to include a list of
eight steps that are critical for the success of a program of slug tests in the final
chapter. I thank Dan for his commitment to organizing quality continuing educa-
tion opportunities for practicing professionals.

As with the first edition, this second edition would not have been possible
without the assistance of my wife, Yun, who has been the central figure in my
life since we met on a cold gray afternoon in Beijing in March 1982. Although
our children, Bill and Mei, have long since ventured out into the world, the
weekend time required for this project did throw a wrench into many planned
activities. Yun’s continued support and helpful “oversight” were invaluable for
bringing this effort to a successful completion.

Lawrence, Kansas
June 5, 2019
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1 Introduction

In virtually all groundwater investigations, one needs to have an estimate of the
transmissive nature of the subsurface units that are the focus of study. In hydro-
geology, the transmissive nature of the media is characterized by the parameter
termed hydraulic conductivity or, in its fluid-independent form, intrinsic perme-
ability. A large number of experimental techniques have been developed over the
years to provide estimates of the hydraulic conductivity of subsurface material.
These techniques range from laboratory-based permeameter or grain-size ana-
lyses to large-scale multiwell pumping tests. In the last few decades, a field tech-
nique for the in situ estimation of hydraulic conductivity known as the slug test
has become increasingly popular, especially among scientists and engineers work-
ing at sites of suspected groundwater contamination. It is no exaggeration to say
that tens of thousands of slug tests are performed each year in the United States
alone. Despite the heavy utilization of this technique by the environmental indus-
try, the scientific literature, for many years, was focused on theoretical models for
the analysis of slug-test data, with relatively little attention paid to the application
of the method in practice. Given the prevalence of the technique and the eco-
nomic magnitude of the decisions that can be based on its results, the objective of
the first edition of this book was to fill the pressing need for a text to which the
field investigator could refer for answers to questions concerning all aspects of
the design, performance, and analysis of slug tests. This second edition updates
the earlier material and expands the topical coverage with new developments that
have come to the fore in the intervening twenty-one years between editions.

THE SLUG TEST—WHAT IS IT?

The slug test is a deceptively simple approach in practice. It essentially consists of
measuring the recovery of head (water level) in a well after a near-instantaneous
change in head at that well (a nearby observation well can also be used in certain
situations). Figure 1.1 is a pair of schematic cross sections that illustrate the
major features of a slug test. In the standard configuration, a test begins with
a sudden change in water level in a well (Figure 1.1A). This can be done, for
example, by rapidly introducing a solid object (hence the term “slug”) or equiva-
lent volume of water into the well (or removing the same), causing an abrupt
increase (or decrease) in water level. Following this sudden change, the water
level in the well returns to static conditions as water moves out of the well (as in
Figure 1.1B) or into it (when change is a decrease in water level) in response to
the gradient imposed by the head change. An example record of head changes
with time during a slug test is given in Figure 1.2. These head changes, which are
termed the response data, can be used to estimate the hydraulic conductivity of
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(A)

(B)

FIGURE 1.1 Schematic cross sections depicting a slug test in a well screened in
a confined aquifer: A) Condition immediately after test initiation; B) Condition some
time after initiation (slug test initiated at time t = 0 by rapid insertion of solid object
(slug) into the water column, H0 is the measured initial displacement (water-level change
produced by slug insertion), figures not to scale).
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the formation through comparisons with theoretical models of the well-formation
response to the slug-induced disturbance. In theory, slug tests can often also be
used to obtain an estimate of the formation’s ability to release or accept water
into storage; this storage capability of the media is characterized in hydrogeology
by the specific storage parameter. However, given the realities of the field, one
can have little confidence in the estimate of specific storage resulting from a slug
test. In contrast to pumping tests, slug tests are rapid and affect a relatively small
volume of the formation, so little information about slow-to-develop flow mech-
anisms (e.g., pore drainage or multiporosity flow) or formation boundaries can
be obtained.

The hydraulic conductivity estimates obtained from slug tests can be used
for a variety of purposes. At sites of groundwater contamination, test estimates
can be used to predict the subsurface movement of a contaminant, to design
remediation schemes, and to plan multiwell pumping tests for obtaining more
information about the large-scale hydraulic behavior of the subsurface units of
interest. In water supply investigations, slug-test estimates are primarily util-
ized for the design of large-scale pumping tests, for estimation of flow in

FIGURE 1.2 Plot of head above static versus log time since test began for a slug test
performed in well #4 at monitoring site 36 in Pratt County, Kansas (H0 is the measured
initial displacement in the well and H�

0 is the expected initial displacement for the test).
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formations of low hydraulic conductivity, and for the assessment of the
hydraulic connection between an observation well and the formation in which
it is screened. In near-surface agricultural applications, parameter estimates
obtained with the slug test, which is termed the auger hole or piezometer
method in the agricultural and soils literature, can be used to design drainage
systems for lowering shallow water tables. In petroleum and coalbed-methane
applications, parameter estimates from slug tests and the closely related drill-
stem test are primarily used to help assess the potential for economic exploit-
ation of a particular petroleum- or methane-producing horizon. In addition,
scientists and engineers from a wide variety of other disciplines use slug tests
in their work. For example, wetland hydrologists will commonly use slug tests
to obtain hydraulic conductivity estimates for water- and solute-balance calcu-
lations, while glaciologists often use slug tests to obtain estimates of the
hydraulic conductivity of the zones at the base of glaciers.

WHY IS IT SO PREVALENT?

The slug test has become such a frequently used field method as a result of its
considerable logistical and economic advantages over alternative approaches.
The most important of these advantages are:

a) Low cost: Both in terms of labor and equipment, the slug test is con-
siderably less expensive than alternative approaches. A program of
slug tests can be performed by one, or at most, two people using
a pressure transducer, data logger, and minor amounts of auxiliary
equipment. When the cost of the equipment is spread over a large
number of tests, the cost per test is extremely low;

b) Simple: As described earlier, the slug test is a very simple procedure.
One initiates a test by a variety of means and then just measures the
changes in head through time. Other than the possibility of having to
clean equipment before moving to the next well, little else is required
in the field;

c) Relatively rapid: The duration of a slug test is short in formations
that would be classified as aquifers. In less-permeable formations, the
test duration can be made relatively short through appropriate well
and test design;

d) Useful in tight formations: The slug test may be one of the best
options for obtaining in situ estimates in formations of low hydraulic
conductivity. In such so-called “tight” units, it may not be practical to
perform constant-rate pumping tests because of the difficulty of main-
taining a low discharge rate. Although constant-head injection tests
are often performed in the geotechnical industry, their logistics and
the need to introduce water into the formation make them less
attractive for environmental applications. Historically, laboratory test-
ing of core samples has been widely used for obtaining information
about the properties of low-conductivity media. This technique,
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however, has become less common because of the concern that core
samples may not provide information on a large enough scale to
detect the existence of preferential flow paths, which can be important
conduits for fluid movement in such settings. The difficulty of obtain-
ing an “undisturbed” sample and concerns about possible differences
between the vertical and horizontal components of hydraulic conduct-
ivity have further limited the use of core-based approaches;

e) No water required: An important advantage of slug tests at sites of
suspected groundwater contamination is that the technique can be
configured so that no water is removed from or added to the well
during a test. This can be done by initiating a test through the add-
ition or removal of a solid slug to/from the water column (Figure
1.1), the pressurization-depressurization of the air column in the
well, etc.;

f) Provides information on spatial variability: A program of slug tests
can be designed to obtain information about spatial variations in
hydraulic conductivity at a scale of relevance for contaminant trans-
port investigations. In contrast, conventional pumping tests will pro-
vide large-scale volumetric averages of hydraulic properties, which
may be of limited use in transport investigations. By performing
a series of slug tests at discrete vertical intervals within individual
wells and/or single tests in relatively closely spaced wells, important
information can be obtained about the vertical and horizontal vari-
ations in hydraulic conductivity at a site;

g) Perceived straightforward analysis: The analysis of response data
from slug tests is generally perceived to be straightforward. Analysis
methods involve fitting theoretical responses (type curves) or straight
lines to plots of field data. The later-time processes and boundary
effects that can make the analysis of large-scale pumping tests so
involved generally have little to no impact on slug tests.

BUT SKEPTICISM ABOUNDS …

Despite the heavy usage by the environmental industry, the slug test is viewed
skeptically by many groundwater scientists and engineers. The origin of this
skepticism is the discrepancy that is often observed between hydraulic con-
ductivity estimates obtained from slug tests and those obtained from other
elements of the field investigation (e.g., geologic and geophysical logs, pump-
ing tests, etc.). Although spatial variability and the different scales at which
the various estimates were obtained can explain a portion of the observed dis-
crepancy, three other factors may be primarily responsible for this situation.
First, well-development activities are often minimal at monitoring wells, the
primary type of wells in which slug tests are performed. The result is that slug
tests can be heavily impacted by drilling-induced disturbances and products of
biochemical action. Countless field examples demonstrate the significant
impact of insufficient well development on slug tests. Unlike pumping tests,
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that impact can be difficult to remove during the analysis process. Second,
slug tests can be heavily impacted by choices made during well construction.
For example, slug tests in formations of moderate-to-high hydraulic conductiv-
ity can yield artificially low conductivity estimates when performed in wells
with relatively small casing radii and/or screen openings (slot size). Third, the
simplicity of the technique seems to foster a rather casual attitude among
some involved in the performance and analysis of slug tests. The result is that
many of the assumptions underlying conventional analysis techniques are not
upheld, introducing a considerable degree of error into the final parameter
estimates. Fortunately, greater attention to details of well construction and
development, coupled with the application of more care to all aspects of the
test process, can greatly improve this situation. However, as will be empha-
sized throughout this book, the effects of incomplete well development and
nonideal well construction may be difficult to avoid. Thus, the hydraulic con-
ductivity estimate obtained from a slug test should virtually always be viewed
as a lower bound on the actual hydraulic conductivity of the formation in the
vicinity of the well. This lower bound can be a very reasonable estimate of
formation conductivity with appropriate field and analysis procedures.

PURPOSE OF THIS BOOK

The major purpose of this book is to provide a series of practical guidelines
that should enable reasonable parameter estimates to be obtained from slug
tests on a consistent basis. Four critical themes will be emphasized throughout
the presentation:

1. Importance of well development: Slug tests are extremely sensitive to
near-well disturbances, so it is no exaggeration to say that the success
of a program of slug tests critically depends on the effectiveness of
well-development activities. Repeat slug tests and preliminary screen-
ing analyses will be the primary approaches recommended here for
the evaluation of the effectiveness of development activities;

2. Importance of well construction: Slug tests can be extremely sensitive
to the details of well construction, so the success of a program of slug
tests, particularly in formations of moderate-to-high hydraulic con-
ductivity, heavily depends on choices made during well design and
construction. Preliminary screening analyses and specialized analysis
procedures will be the primary means recommended here for identify-
ing and partially compensating for nonideal well construction;

3. Importance of test design: A program of slug tests must be designed
so that the viability of the key assumptions underlying conventional
analysis methods can be assessed for a particular set of tests. Repeat
slug tests and comparison of the measured (H0) and expected (H�

0)
values for the initial head change will be the primary means recom-
mended here for this assessment;
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4. Importance of appropriate analysis procedures: The analyst must
strive to extract as much information as possible about the well-
formation configuration from the analysis of slug-test data. Stepwise
analysis procedures (i.e., repeat analyses using different representa-
tions of the well-formation configuration) will be the primary means
recommended here for getting the most from the analysis phase of
a test program.

The importance of these themes will be demonstrated with numerous field
examples. Unless noted otherwise, these examples are drawn from field studies
done by the author while at the Kansas Geological Survey.

In keeping with this book’s role as a reference text, the target audience is
very broad, ranging from the practicing professional to the academically
oriented investigator. An attempt was made to provide a thorough discussion of
all practical issues involved in the design, performance, and analysis of slug
tests. For example, each analysis method is clearly outlined in a step-by-step
manner, after which the procedure is illustrated with a field example and all
major practical issues related to the application of that technique are discussed.
For the more theoretically minded reader, the mathematical models underlying
all major techniques are presented, thus allowing the assumptions incorporated
in the various analysis methods to be better understood. Relevant references are
provided to supplement the discussion in the text. The ultimate objective of the
presentation is to help the reader explore a given topic to virtually any depth
that is desired.

OUTLINE

The core of this book consists of the following eleven chapters (Chapters 2 to 12).
Each chapter is designed to be a relatively self-contained unit, so that the reader
can refer to a particular section without necessarily needing to read the other chap-
ters. The major points of a chapter are summarized in the form of a series of prac-
tical guidelines that are given at the conclusion of each chapter or, in the case of the
analysis methods, presented in a separate summary chapter (Chapter 12).

Chapter 2 focuses on the design of a series of slug tests, the all-too-often
neglected phase of a test program. Details of well construction and develop-
ment pertinent to slug tests are discussed, with an emphasis placed on
approaches for assessing the sufficiency of well-development activities. The use
of repeat slug tests and the H0 �H�

0 comparison to assess the viability of the
assumptions underlying most analysis methods are also discussed.

Chapter 3 focuses on issues associated with the performance of slug tests,
the most practical aspects of a test program. The primary types of equipment
that are used for the measurement and storage of head data are described.
The most common methods for initiating a slug test are then presented, and
the strengths and weaknesses of each are highlighted. A particular emphasis is
placed on assessing each method with respect to the relative speed of test initi-
ation and the potential for obtaining accurate estimates of both H0 and H�

0.
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Chapter 4 focuses on the pre-analysis processing of response data, a critical
step for preparing data for formal analysis and for assessing the appropriate-
ness of the assumptions invoked by the analysis methods. A special emphasis
is placed on the processing of data collected with pressure transducers.

Chapters 5 through 12 focus on the techniques used for the analysis of test
data. All major methods for the analysis of slug tests in confined and uncon-
fined formations are described. Examples are heavily utilized to illustrate how
a particular approach should be applied. An emphasis is placed on the use of
stepwise analysis procedures to obtain as much information as possible about
the well-formation configuration. These procedures are described in detail in
Chapter 12.

Chapter 13 highlights the importance of eight key elements of a test pro-
gram and then briefly summarizes the major themes of the book. The book
concludes with an appendix defining notation used in the text followed by
a list of cited references.

A SHORT WORD ON TERMINOLOGY …

Over the last fifty years, a fair amount of terminology has been developed with
respect to slug tests. Unfortunately, certain aspects of this terminology have led
to some confusion and misunderstandings. Two aspects are worth noting here.
First, there has been an effort to differentiate between tests that are initiated by
a sudden rise or a sudden drop in the head (water level) in a well, that is, tests in
which the direction of the slug-induced flow (into/out of the well) differs. For
tests initiated by a sudden rise in water level (Figure 1.1A), the terms falling-head,
slug, slug-in, and injection tests have been most commonly used in the literature.
For tests initiated by a sudden drop in water level, the terms rising-head, bail-
down, bailer, slug-out, and withdrawal tests have been most commonly used. The
terms response test and variable-head tests have been used for both situations. In
this book, the term slug test is used for all tests in which the focus of interest is
the response to a near-instantaneous change in head at a well. If there is a need
to differentiate between tests on the basis of the direction of the slug-induced
flow, the modifiers rising-head and falling-head are employed. Second, the head
change initiating a slug test has been called the slug, the initial displacement, H0,
and the slug-induced disturbance, among other things. In this book, the terms
initial displacement and H0 are primarily used to designate this initial head
change.

One final issue of semantics concerns what to call the individuals who are
primarily responsible for the planning, performance, and analysis of a program
of slug tests. The most appropriate designation, “groundwater scientists and
engineers”, is a bit too lengthy for repetitive use, so more succinct terminology
must be employed. Thus, the terms “hydrogeologist” and “hydrologist” are
used interchangeably here to designate the group of scientists and engineers
from a multitude of backgrounds who are charged with the task of carrying
out/overseeing a program of slug tests.

8 The Design, Performance, and Analysis of Slug Tests
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