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Abstract

This is the second report in a series of studies of groundwater mineralization in the Great
Bend Prairie aquifer of Kansas by saltwater originating from a deeper Permian bedrock
formation. Part 1 of this study addressed mineralization processes caused by direct contact
between fresh and saltwater along local discontinuities in an impermeable layer that separates
the freshwater aquifer from deep saltwater. However, field studies indicate that in various places
the impermeable layer discontinuities expose subcrops of sandstone strata, which represent
semipermeable strata within a matrix of low permeability siltstone layers. These exposed strata
function as sources of saltwater seepage. This phenomenon is very similar to transmission of
fluid through a semi-confining layer, in response to a local head differential. We have used this
conceptual analogue as a basis for developing a simplified method for the simulation of salinity
penetration through the discontinuity, and of the horizontal migration of the salinity to regions in
the originally freshwater aquifer which are completely separated from the deep saltwater. Along
the horizontal extent of the aquifer we have identified several regions. In all of them various
types of regions of interest (ROI) were identified and top specified boundary layer (TSBL)
simulations were applied.

The method developed in this paper can be useful as a simple but robust approach for the
initial quantitative evaluation of mineralization processes typical of local se;niconfining
discontinuities in an impermeable layer separating a freshwater aquifer from a deep saltwater

formation.

*On leave from the Department of Civil Engineering, Technion—Israel Institute of Technology, Haifa 32000,
Israel.



Introduction

The general background of the research is given in part 1 of this study (Rubin and
Buddemeier, 1998c), which for convenience will hereafter be referred to as report 1. In this
report, only a brief outline relevant to the topic of this article is provided.

The studies covered by this report and report 1 originated from recent field observations
and measurements (Buddemeier et al., 1994) as well as quantitative preliminary calculations
based on previous studies of the authors (Rubin and Buddemeier, 1996, 1998a, b). These recent
studies have indicated that mineralization processes of the Great Bend Prairie aquifer of south
central Kansas might originate from local discontinuities in the impermeable layer that separates
the freshwater aquifer from the deep Permian formation, which is saturated with saltwater. In
western Kansas, that separation is provided by the Dakota formation which ends in central
Kansas beneath the Great Bend Prairie aquifer but in south central Kansas, the impermeable
layer discontinuities may lead to direct contact between fresh and saltwater along local
exposures as discussed in report 1. In most cases, information gathered by Macfarlane et al.
(1993), points to a conceptual approach considers the impermeable layer as the Permian
siltstones. Discontinuities may be represented as comparatively thin oblique subcrops of
sandstone layers which convey seeping saltwater from the deep Permian formation into the
freshwater aquifer.

Rubin and Buddemeier (1998b) analyzed phenomena of groundwater mineralization due
to continuous upward seepage of saltwater through a semiconfining barrier. This report improves
the method of calculation of the salinity intrusion due to seepage and applies the method of
report 1 to calculating the horizontal migration of the salinity to regions completely separated

from the underlying saltwater.



The Conceptual Model and Basic Formulation
The simplified conceptual model shown in Fig. 1 describes a local discontinuity in an
impermeable layer. This discontinuity allows seepage of saltwater from the zone of
comparatively high head, existing in the deep formation, into the region of lower head in the
freshwater aquifer. The length of the discontinuity is x,. A Cartesian coordinate system is
adopted, with the x* axis representing the horizontal longitudinal direction and the y* axis
representing the vertical direction. The coordinate system origin is located at the upstream
boundary of the impermeable layer discontinuity.

Flow conditions and salinity transport in the complete domain of Fig. 1 are governed by

the following set of differential equations

.k
g=—(Vp-pg) (1)
U
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where g is the specific discharge vector; k is the permeability; 4 is the fluid density; g is the
gravitational acceleration; C* is the salt concentration (salinity); Vis the interstitial flow

velocity; D is the dispersion tensor; ¢* is the time.

Equations (1) and (2) represent a system of differential equations which can be solved by
various types of numerical procedures. A major difficulty in such solutions is the nonlinearity
stemming from the dependence of p on the value of C*. However, in the domain of Fig. 1 this
effect may be neglected, as the vertical component of the velocity is every where small.

Furthermore, the salinity effect on the fluid density suppresses the vertical advection of the fluid

particles. Therefore, neglect of the dependence of p on C* is a conservative approach with
regard to salinity migration in the domain. The simplified forms of egs. (1) and (2) are:
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Fig. 1 Conceptual model representing the local semiconfining discontinuity in the

impermeable layer and the region affected by the saltwater seepage.
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Here x* and y* are the longitudinal and vertical coordinates, respectively; U and V are horizontal
and vertical components of the interstitial flow velocity, respectively; Up is the longitudinal flow
velocity at the entrance cross section x = 0; Dy and Dy are the longitudinal and vertical
components of the dispersion tensor; ar, and a are the dimensionless longitudinal and transverse
dispersivities, respectively; lo is an arbitrary characteristic length; ¢ is the porosity; pr is the
density of the freshwater; and C; and C s are the fresh and saltwater salinities, respectively.
The formulation of eq. (4) was based on the assumption that the vertical seepage velocity was

much smaller than the flow induced by the horizontal hydraulic gradient.

To describe the flow in the domain of Fig. 1, we applied eq. (3) subject to the following
boundary conditions:
d =P(x,y), x,y20

Dd=0u=1Lv=0 at x=0
od

__=1+que/ymax at x=x_,. (xmax>xe)

ox
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where xmax and ymgqy were the longitudinal and vertical extents of the simulated domain,

respectively; g, is the relative seepage discharge
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Here gj is the specific (vertical) discharge of the seeping saltwater and gq is the specific
discharge of the freshwater at x = 0.

With regard to the transport model of eq. (4) we considered the following initial and
boundary conditions

C=C(x,y,t), x,y,t 20

C=0 at t=0
C=0 at x=0
C=0 atyzymax
a—C—->0 at x =X,
ox
—aa—C=qR(1—C) at y=0,0<x<x,
dy
C
—=0 aty=0,x,<x<x_,. (3)
dy

Rubin and Buddemeier (1998b) developed a top specified boundary layer (TSBL)
approach which modified the boundary condition of eq. (8) which referred to y = 0, where 0 < x
< x,. The present study improves the accuracy of the calculation by conserving the essence of
this boundary condition. Boundary layer (BL) simulations are compared with numerical

simulations based on egs. (3)—(8).

The Numerical Modeling

The discontinuity in the impermeable layer was represented by a semiconfining portion of length
x,. It could be represented as a salinity line source of contaminant, provided that the penetrating
saline water flux was much smaller than the fresh aquifer specific discharge, and therefore did
not affect flow conditions in the aquifer. At large distances downstream from the discontinuity,
the short line source could be considered as a point source with strength equal to the total flux of
salinity penetrating into the aquifer. Then by using the image method (e.g. Fischer et al., 1979),

the impermeable layer could be simulated. It is also possible to apply power series solutions of



analogous heat conduction problems (Carslaw and Jaeger, 1959) to provide approximate
solutions for the effects of salt water seeping into the fresh water aquifer. However, we have
preferred to apply numerical simulations of the flow and contaminant transport in the aquifer in
order to consider individually the quantitative significance of each of the approximations applied
to the development of the boundary layer (BL) approach.

Report 1 showed that unsteady state conditions prevailed only in a comparatively small
part of the domain containing the penetrating salinity front; this was called the “spearhead

>

region.” Therefore, all comparisons to numerical simulations referred only to the steady state
region, located upstream of the spearhead region. In order to speed up the numerical
simulations, we divided the domain into two sections. The first section included the
impermeable layer discontinuity and a small portion of the domain downstream of that
discontinuity. In this section of the domain, there were some vertical flows induced by the
saltwater, which seeped into the domain. The second section of the domain was essentially
subject to horizontal flow only, and vertical components of the velocity were negligible. We
might consider that in the second section of the domain the velocity was uniformly distributed.
Under such conditions there was no need to solve the Laplace equation of flow in the second
section.

Steady state conditions of flow were assumed for the velocity distribution in the first
section of the domain. Then by applying a finite difference approximation of eq. (3), the
following successive over-relaxation (SOR) procedure for the determination of the

dimensionless potential function ® was obtained:

o) = (1- 0)®f) + ) ,(0, + O

J - i-1,j i+l,j

J+ A+l - O

where [ and j refer to nodal point numbers in the longitudinal and vertical directions,
respectively; ® is the over-relaxation parameter; (n) is the number of the iteration. The

coefficients £ and f; of eq. (9) are given as
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where Ax and Ay are the longitudinal and vertical intervals, respectively.

The numerical scheme of eq. (9) was associated with the appropriate presentation of the
boundary conditions given by eq. (6). Convergence of the SOR iteration procedure of eq. (9)
was guaranteed as the dominant coefficients of the system of linear equations represented by eq.
(9) formed the diagonal of the coefficient matrix.

With regard to the contaminant transport in the domain, we applied two types of finite
difference schemes to eq. (4). We applied again an SOR iterative scheme to the determination
of the salinity distribution in the domain while considering all terms of eq. (4), subject to steady

state. This type of iterative scheme is given as

n+l n n+l n
Ci(,j+ ) = (1- w)ci(,j) + w(ylci(—:j) +7, Ci(+1),j

+7,C55 +7,C5) (11)
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The usage of the SOR scheme of eq. (11) was, however, very inconvenient for a long,
narrow domain in which Ay was considerably smaller than Ax. For the particular cases of
interest to this study we found that the effect of longitudinal dispersion was very minor and

could be neglected. Therefore eq. (14) was approximated as

(13)



Also, the boundary condition at x — « was not required. Therefore, eq. (13) is analogous
to a time dependent one-dimensional contaminant transport problem, in which the x-coordinate
replaces the time coordinate.

We applied a backward finite difference approximation of the second left-hand side term

of eq. (13) and a Crank-Nicolson approximation of the right hand term of this equation to obtain

_alci,j-—l + aZCi,j

"aaci,j+1 =a, (14)

where
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Stability analysis by the procedure of von Neumann (e.g. Lapidus and Pinder, 1982)
indicated that the numerical scheme of eq. (14) was unconditionally stable.

It is also possible to take a central finite difference approximation of the second left-hand
side term of eq. (13). However, then the stability analysis indicates that such a scheme was

applicable provided that the following relationship was satisfied:

—2== (16)

Application of the Top Specified Boundary Layer (TSBL)

Figure 2 shows the various types of BLs considered by the present study. The major objective
of the calculation was to determine the thickness & of the region of interest (ROI) which is
defined as a TSBL, namely at the top of the ROI y = § and C = Cr, where Cr is the acceptable

value of C. All our calculations considered Cr= 0.01.



Fig. 2 Regions and zones identifying the various BLs at the impermeable layer discontinuity

and downstream.
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We identified in the domain three different ranges of x values, which defined three
different sections in the domain. Each section was characterized by a different set of BLs. The

different sections were defined according to the following ranges of x-values.
0<x<xy,

Xos Sx<x,

x, <x (17)

where xp 5 was the value of x, at which the bottom salinity value Cp reached the steady state
value of 0.5.

In the entire domain, vertical flow velocities were considered small enough to be
negligible. We also ignored effects of longitudinal dispersion in the entire domain. If the
thickness of the domain was large and gr << 1, we also neglected the effect of the seeping
saltwater on the aquifer flow. The last assumption was not essential, but considerably simplified
the calculation. The neglect of the vertical velocities in the entire domain created some
difficulty with regard to the boundary condition of eq. (8) referring to y = 0, 0 < x < x,. Rubin
and Buddemeier (1998b) overcame that difficulty by introducing a modification into the
boundary condition. This modification magnified the predictions of salinity penetration into the
freshwater aquifer. Therefore, the previous approach could be considered excessively
conservative. In the present study some new concepts were introduced that allowed us to
conserve the essence of the last boundary condition of eq. (8).

The following paragraphs devote separate discussions to each range of x-values

represented in eq. (17).

Range of x-values 0 < x < x,, ¢
In this range of x-values we divided the domain into two regions as shown in Fig. 2. At the
bottom of the originally freshwater aquifer we assumed that a region of almost uniform salinity

distribution was subject to build-up at 0 <y < §,. This region was termed as the bottom BL, in

11



which the salinity value was Cp. On top of the bottom BL, at §, <y < g, the salinity varied
between Cp and 10-3Cp. This region was called the outer BL. At the top of the outer BL the
salinity practically vanished (i.e., it was smaller than the acceptable value, C7, by at least an
order of magnitude).

As illustrated in the left-hand side of Fig. 3, conservation of mass with regard to vertical

transport affecting the bottom BL yielded:

d

'(};(Cbab)=‘11ecb (18)
where

d d 4

L 2.2 19

dt at+ax (19)

In the outer BL we assumed the following salinity profile

C=C,L(n); n= ;__65” ; 0, <y< 4, (20)
0 b

The function L(77) was represented as a power series by

L=(1-n) 1)

where n is a power coefficient. The value of n should be determined by comparison of
calculated salinity profiles to measured ones, or to results obtained by accurate simulations.

According to Fig. 3 consideration of mass conservation at the outer BL yielded:

;1‘-1;[(50 ~6,)C,]=- T af’;O;Fde (22)
0 ~04)) Lam
Reference to the boundary conditions of eq. (8) implied:
—%i—%qx(l—cb) (23)
Considering eq. (21) the following quantities were obtained
L(0)=-n; [Ldn=1/(n+1) (24)

12



qR(1 -Cb)

0<X<Xo5

Fig. 3

C-~0

~

|c=0.5L)

P-a L'(0)/60-5y)

0.5<X<Xg

X>X g

for the various BLs associated with the ranges of x values shown in Fig. 2.
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Definitions of BL thickness, distributions of salinity, and vertical fluxes of salinity



It was convenient to apply the modified coordinate 7 to the presentation of the various domain

variables. The definition and range of application of 7are
1=6,-0,;, 0s1<an/q, (25)

Some expansion and a different presentation of eq. (22) applied to eq. (25) yielded:

daz d
TE+ TZE(ln Cb) =an(n+1) (26)

By introducing eq. (24) into eq. (23), we obtained:

1
T e 27
*r+anlg, @D
According to eqs. (25) and (27), the range of Cp values is given by:
0<C, <05 (28)
Introducing eq. (27) into eq. (26) we obtained
ar_ an(n +1)G(7) (29)
dt
where
+an/
G(r) =— 1 (30)
(T+2an/ q;)
Direct integration of eq. (29) and reference to the initial condition of #, x = 0 at 7=0
yielded
x——l—H(T) if 0<x<x,,,t
an(n+1) T
1
t=—————-H(7) if t<x<«x 31
an(n+1) ( ) f 0.5 ( )
where
2
H)=~7 + 97 (ﬂ) ln(l + fq—'*) (32)
2 qr qr an
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As indicated by eq. (25) the variable 7 obtains its maximum value at x,, We introduced

this relationship into egs. (31) and (32) to obtain:

an 3 an
*as = m[-z- - 1n(2)] ~08 s (33)

According to eq. (31) the part of the domain represented by the range of x-values 0 < x <
x,,, or identically by the range of 7 values given by eq. (25), is subject to steady state conditions
atr2x,,.

Following the determination of x(7), or #(7), according to eq. (31), and Cp(7) according to

eq. (27), a closed form analytical representation was developed for dp(7) as shown in the
following paragraph.
According to eq. (18):

C,8, = a5 | C,dt (34)

We applied eq. (31), to represent dt by d7, and obtained:

dt=_d7’:___ r+ T (35)
an(n+1) qr \T+an/ g,

Introducing egs. (27) and (35) into eq. (34) and performing the integration while

considering that at £ = 0, the left hand side of eq. (34) vanished, we obtained:

2 3 2
L L I | e e S
an(n+1)| 2 qx qr ) \Ttanlqy qr an

Equations (27) and (36) provided complete information about values of C, and &,

At the upper limit of 7, namely at x = xp 5, provided that t > xp 5, eq. (36) yielded:

0.61an
) ~— 37
S 2. (n+1) 37)
or, by applying eq. (25):
0.61
o = o 38
(0) ey * 160 ) e, (39)
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the acceptable value, C1. Therefore, according to egs. (20) and (21):

The region of interest (ROI) was defined as the region in which the value of C exceeded

1/n

nr =1_(CT /Cb)

where 77_is the value of 77 at the top of the ROL

(39)

The ROI vanished as long as Cp was smaller than the acceptable value Cr. The build-up

of the ROI was performed downstream of x = xp where at xp the value of Cp was equal to CT.

According to eq. (27):

an an
T, =C;

where 73 is the value of 7at xp.

Introducing eq. (40) into eq. (32) we obtained:

H(z,) = Cr(ﬂ)z ==

R CT

o N

Introducing this expression into eq. (31) we obtained:

anC;
Xy =—F—
gr(n+1)

Introducing values of 7, from eq. (40) into egs. (30 and (36) we obtained:

2anC;
anCy

QR(I"CT)~ dr

" 2n+ 1,

(40)

(41)

(42)

(43)

(44)

Downstream of x = xp the thickness of the ROI according to egs. (27) and (39) is given

0=0,+7- TH’"[CT(T+ an/qR)]”"

(45)

The method of approximation applied over the range of 0 < x < x,, could be applied to

the complete range of 0 < x < x, However, the numerical simulations showed that the salinity

16



gradient at the bottom of the aquifer substantially decreased when C, — 1. Therefore, to allow
better matching of salinity profiles at x = x, as well as higher accuracy we developed another

approximation method for the range 0 < x < x, as shown in the following section.

Range of x-values x,; < x <x,

In this range of x-values we divided the domain into two regions as shown in Fig. 2. At the
bottom of the originally freshwater aquifer we consider that an inner BL. was subject to build-up
at0<y< ¢, The salinity in this region varied between C = Cp and C = 0.5. On top of the inner
BL, the outer BL was built-up at §, < y < §,. The salinity in this region varied between C = 0.5

and a negligible value, which we defined as salinity smaller than C7 by at least an order of

magnitude.

In the inner BL we assumed the following salinity profile:

o, -y

C=C,=(C, ~05)M(&); §=—4—=; 0<y <3, (46)
where M(£) was represented as a power series:
M=(1-&" (47

where n1 is a power coefficient whose value should be determined by comparison of calculated
salinity profiles to measured values.

According to Fig. 3, combination of mass conservation in the inner BL with eq. (46)

yielded:

d|. nC,+05 (C, —0.5)n,

Llg W™ Lo 79 48

dt[" n +1 } I 5, *9)

In the outer BL we assumed the following salinity profile:

y-9,

C =0.5L(n); =55 6,<ys<d, (49)
0 u

17



The function L was represented by
L=(1-n)" (50)

As illustrated in Fig. 3, combination of mass conservation in the outer BL with eq. (50)
yielded:

4

dt

_any(n, +1)
K&—&ﬂ—jgjz— (51)

Continuity of the salinity profile at y = §; yiclded:

(C, =0.5)n, __m

s,  6,-9, 2
Rearrangement of terms yielded:
C, = 0.5[1 + Z—j 50‘?‘ 5 ] (53)
For comparatively large values of x the value of Cp approached unity, then
So My (54)
u n2

The build-up of the regions of inner and outer BLs started at ¢ = xg 5. The characteristics
of these BLs were given by egs. (46) and (49). The following expressions apply to values of x <
t. For x-values larger than ¢, the parameter ¢ should be inserted instead of x. In such a manner
we avoided writing long expressions incorporating the step function.

Direct integration of eq. (51) yielded:

(50 _5.4)2 = 2“”2(”2 +1)(x—x0.5)+(50 “5.4)2 (55)

X=Xo.5

It is convenient and very reasonable to assume

(80 =0.) o, =(00=6) .., (56)
(04) e, =(00).., (57)

i

These expressions are subject to minor modification to comply with mass conservation.

18



We introduced egs. (52) and (55) into eq. (48) and performed a direct integration to

obtain:
n,C, +0.5 1 >
A = aa(x= a0 =g 2 + Dk x00) +(8 =801,
1 1
— (6, -0 —(6 8
+2(n2 +1)( 0= 0u) e, +2( . G
Introducing eq. (53) into eq. (58) we obtained:
1)(6, -0
5, =G =8y, pyos ] (59)
2n,
where
8 fn,
F= (60)
(n, +1)(8, - 6,)
1 1 1
=go(x-x,)—-———(8, - 8,) +———(5, -6 = 1
f QR(X xo.s) 2(n2 +1)( 0 u)+2(n2 +1)( 0 ")x=xo_5 +2(6")X=J‘o.s 61

The top of the ROI was again defined by the isohaline C = Cr. Applying eq. (49) we

obtained:

Nr =1_(2CT)U’I2 (62)
6=6u+(60_6u)77T=6077T+(1_77T)6u (63)

Range of x-values x > x,
For this range of x-values, we adopted the method developed in report 1. However, matching
between the right- and left-hand side salinity profiles at x = x, was different, as C, at the left
hand side of x, could be larger or smaller than 0.5. For the appropriate presentation of the
present paper, only a brief review and general outline of this method are given here.

According to report 1, as shown in Figs. 2 and 3, the simulated domain incorporated an
inner and an outer BL. There was no salinity transfer between these two BLs. Vertical salinity

gradients only led to expansion of the BLs.
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The salinity profile in the inner BL, which was adjacent to the aquifer bottom, was given

by

C=C,lI-(-c, M)} 6=637¥ 0<y<s§, (64)

u

where
M =(1-¢&) (65)
Here n3 is a power coefficient which is not necessarily identical to ny of eq. (47); ¢, was
the ratio between the salinity at y = J, and the salinity Cp, at y = 0. In the course of numerical
experiments (report 1), it was found most appropriate to consider ¢, = 0.5. However, in the
present study another set of experiments was needed to identify the most appropriate values of ¢,
relevant to the scope of the present study.

The outer BL was built-up on top of the inner BL. The salinity profile in the outer BL is

given by
C=c,C,Ln) 77=5y_—é"; 5 <y<$, (66)
o Y
where
L=(-n) (67)

Here ny4 is a power coefficient not necessarily identical to n; of eq. (50).

The salinity distribution at x = x, provided the boundary condition for salinity transport
and distribution at x > x.. At t = x, the salinity distribution at x = x, is subject to steady state
conditions, as implied by calculations referring to x < x.. At x > f + x, there was no salinity

penetration. Upstream of x = ¢ + x, values of the thickness of the inner and outer BLs are given

respectively by:

(62), = 62), +ap 22e Dy )
‘ n +c,
(60 -9, )ch = (60 -0, )i +2a,an, (nz + IXx - X, ) (69)
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where @, = 0.935, and ¢, = 0.775.

The ratio between & and J, is given by eq. (54) with n3 and ng4 replacing ny and ny,
respectively. If x, is sufficiently large, then the value of Cp at x, is about unity. Then, the inner
and outer BLs at x > x, represent a direct extension of these layers at x,; <x <'x, provided that ¢,
= 0.5. It should be noted that ¢, = 0.5 was adopted in report 1 as the best-fit value in the case
analyzed by that study. If Cp at x, is significantly different from unity, then the best match of
salinity profiles to calculated curves on both sides of x = x, should be determined.

According to report 1 the value of Cp was given by

(Cb ) x,t = (5“ Cb )x=x, SA=r-x4 X, / (5" )x,t (70)

The ROI was again defined in this study as the region in which the salinity exceeded its

acceptable value, C7. The ROI was represented as a top specified boundary layer (TSBL) whose

thickness was 0.

If 5, < 6< &y then

moli)
6 =16, +(1-1;)3, (72)
If 0 < 6< 6, then
& = —[i) 73)
I-c,
6=0,(1-¢;) (74)

Preliminary Tests
Our preliminary tests concerned the possible employment of the BL method developed in this
paper, and addressed its adequacy. The objective of the tests was also to determine possible basic

parameters for the models developed for each range of x-values. The test results presented in the
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following section address the complete determination of parameters and matching of salinity
profiles at each boundary separating adjacent ranges of x-values.

Figures 4 and 5 show the distribution of the ratio between the thickness of & and of &,
which is defined as dg. This ratio was calculated at 0 < x <x, only if Cp was larger than 0.5. At
0 < x < x, the value of &, represented the isohaline C = 0.5. At x 2> x, the value of J, represents
the normalized isohaline C/Cp = 0.5. Some very large values of dg have been omitted at xg 5 in
order to allow appropriate presentation of dg for the complete range of x-values.

For the complete range of ggr values considered in Fig. 4, the value of Jg at x 2> x,
approaches a constant value, g —3.17. This phenomenon also occurred in the case analyzed in
report 1. Therefore, downstream of x,, as shown in Fig. 4, the model developed in report 1
could basically be applied to the calculations of the present study. However, dg in proximity to
xe, acquired significantly different values for large and small values of a. In order to identify the
cause of this phenomenon and to quantify its effect, we performed another set of numerical

experiments whose results are depicted in Fig. 5. The experiments used the largest expected

value of gg, namely ggr = 0.1, and a comparatively large value of x,, namely x, = 100. Fig. 5
indicates that for very large values of ggr and very small values of a (i.e. very large values of
qr/a) the value of Og does not obtain its asymptotic value even at a very large distance
downstream of x.. Figs. 4 and 5 also indicate that for large values of gg/a, the value of Jg
decreases with x upstream of x,, and probably approaches a value of the order of magnitude of
unity. However, in none of these figures was such an asymptotic value obtained, due to the
comparatively short horizontal extent of the impermeable layer discontinuity.

We might conclude that in the range xp 5 < x < x, some difficulties in calibration of the
BL model could be encountered. According to Fig. 5 we might also expect difficulties in
applying the BL model at x = x, if gr/a were very large.

Figure 6 represents results of numerical experiments to identify the best-fit value of n3
and ngq. Besides determining the salinity profiles by numerical procedures, at each relevant cross

section we considered values of n4 and calculated the value of n3 by applying the relationship
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Fig. 4 Values of O for various values of gg (@ = 0.1, xe = 50).
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n,=n, /(65 -1 (75)
Fig. 6 shows that appropriate values of n3 and n4 were:
n,=4, n,=184 (76)

These values were identical to those found in report 1. However, they must be applied

very carefully. At comparatively large values of x, and gg/a the seeping saltwater creates a
“saltwater mound.” Then the model at x 2 x, could not be rigorously applied. The “saltwater
mound” phenomenon represents the build-up of a comparatively thick layer of water with very
high salinity, in which salinity gradients are comparatively small. This phenomenon is
magnified by large values of x, and gg/a, and introduces difficulties in applying the BL model
developed in this study. However, cases of mineralization in the Great Bend Prairie aquifer do

not often fall into the category of “‘saltwater mound” build-up.

Characterizing the Mineralization Process

Presentation of the mineralization process in terms of the BL characteristics has two major

advantages:

(a) it provides basic information about the intensity of the mineralization process by applying a
basic set of simple parameters, and

(b) it provides a simple and robust method for the quantification of the mineralization

phenomenon.

The set of important basic parameters consisted mainly of values of & and Cp.

Parameters like Jp, d, and the salinity profiles were of less importance. However, the complete

presentation of the method required reference to all these parameters.

Very small values of gr/a were considered for the range of x-values 0 < x < xp5.

Otherwise this range was very short. Fig. 7 provides a single example of our characterization

procedure. By choosing n = 3 we obtained quite good agreement between the numerical and BL
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Fig. 7a  Characteristics of the range 0 < x < xp5 (@ = 0.1, g =0.01, n = 3)

(a) Values of &, S, &
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Fig. 7c Characteristics of the range 0<x<x95(@a@=0.1,gr =0.01,n=3)

(c) Salinity profiles
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predictions with regard to values of §and Cp. With regard to values of & and salinity profiles,
the agreement was practically acceptable. It should be noted that values of & could not be
determined by the numerical method. The definition of Jp is an artificial means of satisfying the
boundary condition at y = 0. As long as & is smaller than the vertical interval Ay of the
numerical scheme, we can still consider that the numerical and BL approaches are compatible.
Figure 8 represents a single example of characterization of the range xp 5 < x < x,. The
results represented in Figs. 6 and 7 indicate that laws of similarity that are typical of BLs were
least acceptable in this range of x-values. However, Fig. 8 shows quite good agreement between

all predictions of the numerical and the BL methods for a rather long discontinuity in the

impermeable layer, namely x, = 100, while considering n1 = 1.3 and np = 2.2. These were
simply some average values. The salinity profiles of Fig. 8(c) suggest that for large values of x,
the range xp 5 < x < x, might better be divided into some subranges in which values of n; and np
are subject to increase with x. However, even without such a division, Fig. 8§ shows good
agreement between the major parameters of the mineralization predicted by the numerical and
the BL methods. It should be noted that changes of power coefficient laws require adjustment of

BL parameters, to comply with mass conservation.

Characteristics of the range x 2 x, at a comparatively high value of gg/a are depicted in

Fig. 9. In this case matching between salinity profiles at xp 5 and x, is given by

X35 = (50)*‘3.5

(6,) ; =(“"I;),,3_5
(50),; =(50),;

(6.),: =(8.),. (77)

where minus and plus superscripts of xp 5 and x, refer to upstream and downstream values,

respectively. Some adjustments of the values given by eq. (77) are required to comply with

mass conservation.
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Fig. 8¢  Characteristics of the range x5 <x<x, (a=0.1,gr=0.1,n=3,n1 = 1.3, n2 =2.2)

(c) Salinity profiles
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Fig. 9a  Characteristics of the range x 2 x, at a high value of gg/a (@ =0.1, gr = 0.1, x, = 50,
n=3,n=13,n=22,n3=184,n4=4)
(a) Values of &, 6, &
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Fig. 9b  Characteristics of the range x = x, at a high value of gg/a (a = 0.1, gr = 0.1, x¢ = 50,
n=3,n=13,n=22,n3=184,n3=4)
(b) Values of Cp

35



0.6 —=u— x = 100(NU)
—0— x = 300(NU)
0.5
—e— x = 100(BL)

—o— x = 300(BL)

0.3 1

0.2

0.1

0.0
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(c) Salinity profiles
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We also found it appropriate to apply:
n,=184;, n,=4 (78)

as was obtained in report 1 and indicated by our preliminary numerical experiments.

The information assembled in Fig. 4 indicates that some difficulties could be expected in
using the BL approach at comparatively high values of ggr/a like gr/a = 1. However, Fig. 9
shows quite good agreement between the predictions of the numerical and the BL methods. This

agreement is good with regard to all parameters of the mineralization process.

Figure 10 refers to characteristics of the mineralization process when the value of gr/a is
comparatively low, gr/a = 0.1. According to Fig. 4, for such a small value of gg/a the boundary
layer approach is very appropriate. However, in the particular case of Fig. 10 the value of x,
was smaller than xp 5. Therefore, appropriate measures had to be taken for adequate matching
between the ranges 0 < x < xp 5 and x =2 x,. We found that employment of the conservation of

mass principle on both sides of x, is a very appropriate matching procedure, namely

Iew] [[7es],

Introducing eq. (20) into the left-hand side and eq. (64) into the right hand side of eq.

(79) and considering that at 0 <y < ¢, the value of C was Cp, we obtained:

(80)

ML)WSO sy Fi--n)"]

(n+1)(n, +C,)
where

5.-6,
=[TuCe 81
n. (50—51,),, (81)

We applied egs. (80) and (81) in simulations whose results are represented in Fig. 10,
which shows very good agreement between the numerical and BL methods with regard to all

parameters of the mineralization process.
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Fig. 10b  Characteristics of the range x 2 x, at a low value of ggr/a (a = 0.1, gg = 0.01, x, = 50,
n=3,n1=13,n=22,n3=184,n4=4)
(b) Values of Cp
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Fig. 10c  Characteristics of the range x 2 x, at a low value of gg/a (a = 0.1, gg = 0.01, x, = 50,
n=3,n1=13,np=22,n3=184,n4=4)

(c) Salinity profiles
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Fig. 11 shows the possible effect of the “saltwater mound” build-up. Fig. 5 indicated that

at large values of ggr/a and x, there might be some difficulties in the usage of the BL method
developed in this paper. Such problems stem from the neglect of effects originating from the
build-up of the “saltwater mound.” Although in Fig. 5 we considered values of gr/a up to gr/a
= 10, we assumed that practical values of this parameter in most of the relevant region of Kansas
subject to groundwater mineralization are not larger than unity. We based this assumption on
available geological information (Macfarlane et al., 1994) and considering that lp = Im.
Therefore, in Fig. 11 we referred to gg/a = 1 and x, = 100. Both of these values were assumed
to be high values for practical applications. Generally, the results represented in Fig. 11 show
good agreement between the numerical and BL predictions with regard to all parameters of the
mineralization process. However, as indicated by Fig. 5, for higher values of ggr/a and x, some
more significant effects of the “saltwater mound” build-up were expected. Under such
conditions usage of the BL approach developed in this paper could be considered as an extreme
conservative prediction, as it magnifies the values of &.

Figure 12 shows the steady state as well as the spearhead regions of the aquifer portion
subject to mineralization and exemplifies the major parameter distributions along the entire

extent of the salinity penetration, as predicted by the BL method developed in this report. We

considered in this simulation that all BLs vanished at the front of the spearhead region where Cp
was smaller than C7. In initial stages, when Cp at x, was smaller than 0.5, we applied eq. (80),
in order to obtain an appropriate match between salinity profiles at x..

In should be noted that the BL method of the present study considers an aquifer of
infinite thickness. When the predicted value of & is close to the thickness of the aquifer the
salinity distribution starts to be affected by the top of the aquifer. Also, at a very large distance
from the discontinuity of the impermeable layer, salinity distribution may become almost
uniform in the vertical cross section. Such a result has not been obtained in the present study; it
seems that such uniformity is usually obtained when the build-up of the BLs is affected by the

top of the aquifer.
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(b) Values of Cp

43



0.9
0.8
—n— x = 100(NU)
0.7 1
—0O— x = 300(NU)
0.6 —e— x = 100(BL)
O 0.5 - —o— x = 300(BL)
0.4
0.3 1
0.2 -
0.1
0.0 et
0 10 20 30 40

Fig. 11c  Characteristics of the range x > x, at high values of gg/a and x, (a = 0.1, gg = 0.1,
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(c) Salinity profiles at x = 100, 300
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Fig. 11d Characteristics of the range x 2 x, at high values of gr/a and x, (a = 0.1, gr = 0.1,
x=100,n=3,n1=13,n=22,n3=1.84,n4 =4)

(d) Salinity profiles at x = 500, 1000
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xe=100,n=3,n1=13,n=22,n3=1.84,n3=4)

(e) Salinity profiles at x = 1500, 2000

46



70
60 o e
-<— discontinuity of
50 /0/
/ *
Ag 40 7 —.— 6U
< b
- —_—
S 30 <
spearhead —» —e— B
#
&
20 1
; /_./-—l"':rrr,"ml.
*
& | Lo
o a-n—
10 ¢ "
I = steady state ——»
¢
0 % | T T %
0 200 400 600 800 1000 1200
X
Fig. 12a  Characteristics of the whole extent of the salinity penetration (a = 0.1, gg = 0.1,
xe=100,t=1100,n=3,n1=13,m=22,n3=1.84,n4=4)

(a) Shape of the various boundary layers

47



70 7

L 4
4

60
50
C
OOO 40 = —— 8u
7=
5 = 5
“ 30
—_—— 60

20 -

.*—.‘._ =

.-—— —
L E—8—HN—pg-E—u-E-p-10EEE

10
0 | T T T %
1000 1020 1040 1060 1080 1100

Fig. 12b Characteristics of the whole extent of the salinity penetration (a = 0.1, gg = 0.1,
xe=100,t=1100,n=3,n1=13,n=22,n3=184,n4=4)

(b) Boundary layers at the spearhead region

48



1.0 i
|
\

L

0.9

0.8

0.7

/

./I

Cb

©o o o o
N w H )1
—ua-Llp—plp-plng-nn
-

—.’.—.’.

o
—

-n—N
Lnpnan-nn- "

o
o
© -

1 i I I 1

200 400 600 800 1000 1200

X

Fig. 12c  Characteristics of the whole extent of the salinity penetration (@ = 0.1, gg = 0.1,
xe=100,t=1100,n=3,n1=1.3,n2=2.2,n3 =1.84, ng = 4)

(c) Distribution of Cp

49



Some practical applications

The method developed in this study has already been applied to the estimate of some phenomena
associated with aquifer mineralization in Kansas. Garneau (1995) analyzed measurements of
salinity in sets of monitoring wells, some of them drilled in regions subject to seepage of saline
water from the deep formation into the freshwater aquifer. Other monitoring wells were located
downstream of the area of saline water seepage. Therefore he could follow the development of
salinity profiles in various east-west cross sections of the aquifer. In his study he applied the
methods developed in the previous studies (Rubin and Buddemeier, 1998a, b) and the method of
the present study. As mentioned in report 1, he could analyze salinity profiles in locations of
direct contact between the saline and freshwater as well as profiles measured downstream of
such locations. By comparing the field measurements with the TSBL method he found values of
the characteristic transverse dispersivities of the aquifer. He could also estimate the location of
discontinuities of the impermeable layer.

Young and Rubin (1998) have calculated possible infiltration of saline water from the
deep bedrock into the freshwater aquifer, in locations of salinity penetration into the freshwater
aquifer. They made measurements of salinity profiles in closely-spaced monitoring wells that
penetrated to various depths in the aquifer as well as into the bedrock surface. They measured
the pressure in all wells at particular locations, and made an integration of the density profile, to
calculate the “effective hydrostatic pressure” in the bedrock aquifer. According to the difference
between the measured pressure in the bedrock aquifer and its effective hydrostatic pressure, as
well as the approximate value of the vertical hydraulic conductivity, Young and Rubin (1998)
calculated the rate of seepage of salt water from the bedrock aquifer to the freshwater zone.
Calculations of Young and Rubin (1998) and Garneau (1995) can be used to obtain better
estimates of dispersivity values, as well as the size of the discontinuity, through which saline
water seeps into the freshwater aquifer.

Quinodoz and Buddemeier (1997) calculated budgets of groundwater and salinity in

sections of the aquifer subject to mineralization. Their calculations could verify, and be used for
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checking the validity of, some of the estimated calculations of Young and Rubin (1998) and

Garneau (1995).

Summary and Conclusions

Recent studies have shown that in many cases of aquifer mineralization in South-central Kansas,
saltwater seeps into the freshwater aquifer through semiconfining discontinuities in impermeable
layers.

In the framework of this study a method employing the top specified boundary layer
(TSBL) was developed for the prediction of the salinity penetration into the freshwater aquifer
through such semiconfining discontinuities in an impermeable layer. The method considered
two ranges of x-values at the discontinuity in the impermeable layer and two ranges of x-values
downstream of that discontinuity.

Ranges within the discontinuity were:

(a) x-values for which Cp was smaller than 0.5, and
(b) x-values for which Cp was larger than 0.5.

Ranges of x-values downstream of the discontinuity were:
(a) the steady state region extending between x = x, and x = ¢, and
(b) the spear-head region extended between x = t and x = 1 + x,.

In range (a) within the discontinuity it was assumed that a bottom BL and an outer BL
developed. Salinity distribution in the bottom BL was uniform. In the outer BL, salinity
distribution was represented by a power series expansion.

In range (b) of the discontinuity it was assumed that inner and outer BLs developed. In
both layers salinity distributions were represented by power series expansions.

The range of x-values downstream of the discontinuity was simulated by a single model,
which assumed that inner and outer BLs developed in that domain. In both layers salinity

distributions were represented by series expansions. There was no salinity transfer between the

51



BLs, and the vertical salinity gradients led to the expansion of the two BLs. Good agreement
was obtained between results of the BL method of this study and numerical simulations for
predictions of major mineralization parameters.

The BL method defined major parameters of the mineralization process. The most
important parameter was the top specified boundary layer (TSBL) which identifies the region of
interest (ROI). In the ROI the salinity was larger than the acceptable value. Other major
parameters were the value of the salinity at the bottom of the aquifer and the salinity distribution
in the ROI.

The method developed in this study was found to be applicable up to gg/a = 1 and x, =
100. At higher values of these parameters, effects of the build-up of a “saltwater mound” at the
discontinuity were observed. Use of the BL method when such effects are significant can be
assumed to be a conservative approach, as the BL calculation magnifies the vertical expansion of
the salinity penetration under such conditions.

The BL method developed in this study represents a quick approach for the
characterization of the mineralization process by the employment of a set of small number of

simply defined major parameters.
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Notation

a dimensionless transverse dispersivity
ar, dimensionless longitudinal dispersivity
BL boundary layer ¢, ratio between C and Cp at the boundary between the inner

and outer boundary layers

C dimensionless salinity

Cp dimensionless salinity at the bottom of the aquifer
Cr dimensionless salinity at the top of the ROI

Cc* salt concentration (- salinity) [ML-3]

C, salinity of the freshwater [ML~3]

salinity of the saltwater [ML—3]

D dispersion tensor [L2T-1]

Dy longitudinal dispersion coefficient [L2T-1]

Dy transverse dispersion coefficient [L2T1]

f a function defined in eq. (61)

F a function defined in eq. (60)

G a function defined in eq. (30)

H a function defined in eq. (32)

g gravitational acceleration [LT2]

i number of nodal point in the longitudinal direction
J number of nodal point in the vertical direction

k permeability [L2]

lp length scale {L]

L power series functions defined in egs. (50) and (67)
M power series functions defined in egs. (46) and (65)
n power coefficient of boundary layer series expansion at 0 < x <x,,
(n) number of iteration
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ni power coefficient of inner boundary layer at x,,<x <x,

ny power coefficient of outer boundary layer at x, < x <x,
nj3 power coefficient of inner boundary layer at x > x,

n4 power coefficient of outer boundary layer at x > x,
NU value obtained by numerical simulation

p pressure [MLT2]

q specific discharge [LT-1]

q0 specific discharge of the aquifer at x = 0 [LT-1]

gs specific discharge of the seeping saltwater [LT—1]

qr ratio between gz and gp

ROI region of interest

t dimensionless time

te the dimensionless time needed by a fluid particle to be advected from x, to x
t* time (T)

TSBL top specified boundary layer

u dimensionless longitudinal velocity

U longitudinal interstitial flow velocity [LT-1]

Uo value of U at x <0 [LT™!]

v dimensionless vertical velocity

Vv vertical interstitial flow velocity [LT-1]

x dimensionless longitudinal coordinate

x* longitudinal coordinate [L]

Xp starting point for the ROI build-up

X0.5 starting point for C, 20.5

Xe dimensionless length of the impermeable layer discontinuity
Xmax maximum value of x incorporated in the simulation
X, length of the discontinuity [L]
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dimensionless vertical coordinate

maximum value of y incorporated in the numerical simulation
vertical coordinate [L]

coefficient defined in eq. (68)

coefficient defined in eq. (69)

coefficients defined in eq. (15)

coefficients defined in eq. (10)

coefficients defined in eq. (12)

dimensionless thickness of the ROI

dimensionless thickness of the bottom boundary layer
dimensionless thickness of the inner boundary layer
dimensionless thickness of the combined outer and inner boundary layer
ratio between &y and Jy

longitudinal interval

vertical interval

outer boundary layer coordinate

valueof naty =0

value of 77 defined in eq. (81)

viscosity [ML-1T-1]

inner boundary layer coordinate

value of £aty =&

porosity

dimensionless potential function

fluid density [ML-3]

density of the freshwater [ML3]

modified coordinate equal to &y —

value of Tat xp
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over-relaxation coefficient
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