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Abstract

Costs and specifications for multiple large-scale CO2 pipeline scenarios were
derived using a modified FE/NETL CO2 Transport Cost Model (Grant and Morgan,
2014). Transportation analysis is a component of a Phase | CarbonSAFE project,
Integrated CCS for Kansas (ICKan), administered by the Kansas Geological Survey.
One plan evaluated is gathering 10.9 million tonnes/yr (MT/yr) CO2 from 32
Midwest ethanol plants, combining it with 2.5 MT/yr CO2 from a Kansas coal-fired
power plant, and transporting the CO2 to a saline aquifer site for CCS and to CO2
enhanced oil recovery markets in Kansas, Oklahoma and Texas. Economies of scale
would reduce transportation costs for both, especially critical for the CCS project.

For a single point to point pipeline, the NETL Cost Model takes inputs, including
length, CO2 capacity, pressure, project financing, and other parameters, and
calculates capital and operating costs, and technical specifications such as pipeline
diameter and pumping stations required. Calculations are by spreadsheet formulas
and Excel VBA functions. The model was modified to evaluate multiple segments of
a complex gathering and transportation system in one operation. Without changing
or modifying the NETL spreadsheets or VBA code, a VBA macro was added that
collects input parameters from a list of pipeline segments and calculates and
records model outputs for each segment.

Modifications of the FE/NETL CO2 Transport Cost Model are discussed and the
analyses of several CO2 pipeline scenarios are presented. The modified tool
provides efficient high-level analysis of complex infrastructure required for large-
scale CO2 transportation from multiple sources.

Integrated CCS for Kansas

Goals & Objectives

1. Identify and address major technical and
nontechnical challenges of implementing CO, capture
and transport and establishing secure geologic
storage for CO, in Kansas

2. Evaluate and develop a plan and strategy to address
the challenges and opportunities for commercial-
scale CCS in Kansas

! > = T
f Nemaha i
@ Uplift to upper.Midwest
CO, sources
Central A rési

I g
Kfﬂ?aﬂ@ﬂ?f salina Jeffrey Energy;7

@ - . Basin Center asin’ &
emis-Shutts y )

Davis Ranch,
John Creek

11, 12

'y Sedgwick
1 == praijrie 4 o B
ubank Hugoton o Wellington ] Cherokes
® Cutter Embayment 70@1 Basin
to Guymon, OK = [ L l
Shuck Rl "8 o @
( / bl
= o T ‘aEX rﬁap i
F proposed geologic ok
coal-fired power plag? storage complex
petroleum refinery or geologic storage complex =
@ manufacturing plant (cement & fertilizer) study area and closure
@ ethanol plant oil and gas fields

Base Case Scenario

1. Capture 50 million tonnes CO, from one of three
Jeffrey Energy Center’s 800 MWe plants over a 20
year period (2.5Mt/yr)

2. Compress CO, and transport 300 miles to Pleasant
Prairie Field in SW Kansas for storage in saline
aquifer below oil zones

e Alternative: 50 miles to Davis Ranch and John
Creek Fields.

3. Evaluate transport cost savings through scaling by
combining with transportation infrastructure for
CO2 from Ethanol in Upper Midwest

FE/NETL Transport Cost Model

Why use the FE/NETL Transport Cost Model?
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documented and thoughtfully applies publicly
available costing data and equations from reliable, 1,500,000
peer-reviewed sources.

500,000

* The Cost Model was easily adapted to our needs for
evaluating capital and operating costs for multiple g
pipeline segments by creating additional Excel VBA
macro functionality to interact with the NETL cost
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point pipeline (Engineering model)

* Model calculates break-even first year CO2 price for
transporting CO2 (Financial Model)

Pipeline cost estimates by diameter in 2011S/mi. Parker
(2004), used in Cost Model give highest pipeline capital costs
followed by McCoy and Rubin (2008) and Rui et al. (2011).

Additional Work

Changes to improve the model:

 Update to current dollars. The Cost Model
reports in 2011 dollars.

e Surge tank cost and application needs to be
better understood and possible modifications
applied. In the current model, a single surge tank
at a set cost is applied for each pipeline segment.

* The control system cost is a single flat rate per
pipeline segment, and is rather low. This needs
to be modified.

* Need to add an additional booster pump at the
end of each segment that joins another segment.
Current model is a point-to-point pipeline with
the downstream ending at an injection well
rather than needing to be boosted to pipeline
pressure.

 Comparison with detailed costs from “real-life”
examples could guide other improvements.

Engineering model

* User specifies length, CO2 volume/yr, pipeline capacity .
factor, input and outlet pressure, and change in elevation.
User can specify the number of booster stations.

* Outputs: minimum and nominal pipeline diameter, capital
costs by category (materials, labor, misc., surge tanks, control
systems, booster pumps), and operating costs (pipeline
O&M, equipment and pumps O&M, and electrical costs).

Financial model (financial model not used in study)

User specifies: start year (2011), length of construction
period (3 years) and length of operations (30 years)
User specifies financial parameters: debt/equity ratio
(45%/55%), cost of debt (5.5%/yr), desired rate of return on equity

(12%/yr), escalation rate (3%/yr), tax rate (38%), project contingency
(15%) depreciation method

Output: Model generates cash flow of revenues and

calculates break-even first year CO2 price

Modifications to Cost Model

For calculating many pipeline network segment costs in one

operation, created additional Excel VBA macro functionality to interact with the
NETL cost model without modifications to the NETL spreadsheets or VBA code.

 Added a new worksheet to the Cost Model workbook (see Poster Panel 2)
with columns for user input parameters and cost model output

* Created a VBA macro that collects inputs from a list of pipeline segments
copied into the new worksheet.

* Changed binning on pipe diameters so minimum nominal size 4”
 New macro inputs the parameters for each segment to the Cost Model.

* Records model outputs for each segment individually in the new worksheet.

Model inputs and outputs

Inputs (by segment)

length (miles)

number of booster pumps
annual CO2 transport (Mt/yr)
capacity factor

input pressure (psig)

output pressure (psig)
change in elevation (feet)

Outputs (by segment)
minimum pipeline ID (inches)
pipeline nominal diameter (inches)
materials costs

labor costs

ROW-damage costs
miscellaneous costs

CO2 surge tanks costs
pipeline control system costs
pump costs

Total capital cost

pipeline O&M

other equipment and pumps O&M
electricity costs for pumps

Total annual operating expenses
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CO2 Volumes and Network Design Results and Discussion

Model Inputs and Outputs
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